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High-throughput screening and machine
learning classification of van der Waals
dielectrics for 2D nanoelectronics

Yuhui Li1,2,4, Guolin Wan1,2,4, Yongqian Zhu1,2, Jingyu Yang 1,2, Yan-Fang Zhang2,
Jinbo Pan 1,2 & Shixuan Du 1,2,3

Van derWaals (vdW) dielectrics are promising for enhancing the performance
of nanoscale field-effect transistors (FETs) based on two-dimensional (2D)
semiconductors due to their clean interfaces. Ideal vdWdielectrics for 2D FETs
require high dielectric constants and proper band alignment with 2D semi-
conductors. However, high-quality dielectrics remain scarce. Here, we
employed a topology-scale algorithm to screen vdW materials consisting of
zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials
Project database. High-throughput first-principles calculations yielded band-
gaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials.
Among which, 9 highly promising dielectric candidates are suitable for MoS2-
based FETs. Element prevalence analysis indicates that materials containing
strongly electronegative anions and heavy cations are more likely to be pro-
mising dielectrics. Moreover, we developed a high-accuracy two-stepmachine
learning (ML) classifier for screening dielectrics. Implementing active learning
framework,we successfully identified49 additional promising vdWdielectrics.
This work provides a rich candidate list of vdW dielectrics along with a high-
accuracy ML screening model, facilitating future development of 2D FETs.

Two-dimensional (2D) semiconductors, characterized by their atom-
ically thin thickness and exceptional gate controllability, have attrac-
ted great attention for their potential applications in the next-
generation nanoscale field-effect transistors (FETs)1,2. 2D transition
metal dichalcogenides3,4, 2D black phosphorus5, and few-layer InSe6,
possessing high carrier mobility, have been demonstrated to be pro-
mising channel materials. Nonetheless, their optimal electrical per-
formance is constrained by the gate dielectrics used. Integrating 2D
semiconductors with conventional three-dimensional (3D) dielectrics
(e.g., SiO2, Al2O3, and HfO2) introduces numerous surface dangling
bonds that act as carrier scattering centers at the interface, thereby
reducing carrier mobility in the channel7,8. Van der Waals (vdW)
dielectrics, including 0D vdWdielectrics (composed of 0Dmolecules),
1D vdW dielectrics (composed of 1D atomic chains), and 2D vdW

dielectrics (composed of 2D atomic layers) are free of dangling bonds,
offering an alternative scheme for integration with 2D
semiconductors8,9. Encapsulating 2D semiconductors with vdW
dielectrics has been observed to result in heightened carrier mobility
and improved switching stability compared to those encapsulated
with conventional 3D dielectrics10–12.

The performance of vdW dielectrics in 2D FETs greatly depends
on several critical qualities such as dielectric constant, band gap, and
band alignment with 2D semiconductors. A large band gap and proper
band alignment with 2D semiconductors minimize the gate leakage
current, while the high dielectric constant improves gate controll-
ability over the channel. However, the repertoire of suitable vdW
dielectrics remains limited to date. Only a handful of vdW dielectrics
have been experimentally reported, such as 2D h-BN10,11, 2DMoO3

13, 2D

Received: 16 May 2024

Accepted: 24 October 2024

Check for updates

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. 2University of Chinese
Academyof Sciences, ChineseAcademyof Sciences, Beijing 100190,China. 3Songshan LakeMaterials Laboratory, Dongguan 523808, China. 4These authors
contributed equally: Yuhui Li, Guolin Wan. e-mail: jbpan@iphy.ac.cn; sxdu@iphy.ac.cn

Nature Communications |         (2024) 15:9527 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2299-3966
http://orcid.org/0000-0003-2299-3966
http://orcid.org/0000-0003-2299-3966
http://orcid.org/0000-0003-2299-3966
http://orcid.org/0000-0003-2299-3966
http://orcid.org/0000-0003-2612-8232
http://orcid.org/0000-0003-2612-8232
http://orcid.org/0000-0003-2612-8232
http://orcid.org/0000-0003-2612-8232
http://orcid.org/0000-0003-2612-8232
http://orcid.org/0000-0002-6766-0623
http://orcid.org/0000-0002-6766-0623
http://orcid.org/0000-0002-6766-0623
http://orcid.org/0000-0002-6766-0623
http://orcid.org/0000-0002-6766-0623
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53864-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53864-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53864-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53864-4&domain=pdf
mailto:jbpan@iphy.ac.cn
mailto:sxdu@iphy.ac.cn
www.nature.com/naturecommunications


Bi2SeO5
14,15, 2D SiP2

16, 0D Sb2O3
12, and 1D vdW organic polymers17.

Theoretically, a few 0D and 2D vdW dielectrics are predicted18,19, while
1D inorganic vdW dielectrics are rarely reported. This scarcity, as well
as the stringent quality requirements of vdW dielectrics, pose a sig-
nificant challenge to the development of 2D FETs8,20. Consequently, a
more abundant list of vdW dielectrics with diverse crystal structures is
highly desirable.

In this work, using a topology-scaling algorithm21, we screened
potential vdW materials from the Materials Project (MP) database22.
Our screening criteria include experimentally synthesized, bandgap
exceeding 1.0 eV, atomic number below 50, absence of transition
metals and inert elements, and a ratio of total atomic covalent volumes
to unit-cell volume larger than 0.14 for 0D compounds. We then
obtained bandgaps and dielectric constants (ε) along the vdW direc-
tion for 189 0D, 81 1D, and 252 2D vdW materials via high-throughput
calculations. Among them, nine highly promising dielectrics are sui-
table for 2DMoS2-based FETs, since their band offsets relative toMoS2
are larger than 1 eV, minimizing the gate tunneling current. Statistical
analysis reveals that materials with 1D and 2D motifs, along with
strongly electronegative anions and heavy cations, tend to exhibit
both large bandgap and ε values. We further developed a machine
learning (ML) model using seven relevant feature descriptors to
quantitatively screen promising dielectrics. This ML model comprises
two sequential screening classifiers for band gap and dielectric con-
stant, both achieving accuracies exceeding 80%. Implementing an
active learning framework, we successfully identified an additional 49
promising vdW dielectrics. This work not only provides a rich list of
vdW dielectric candidates but also establishes a high-accuracy ML
model for efficient screening. These findings hold significant potential
for advancing the development and application of 2D FETs.

Results
Database screening and high-throughput calculations
Figure 1 shows the integration of low-dimensional vdW dielectrics and
2D semiconductors. These configurations, featuring clean vdW con-
tact interfaces, preserve the intrinsic electronic properties of 2D
semiconductors, such as high carrier mobility. Recent experiments
have reported the growth of mixed-dimensional heterostructures23–25,
demonstrating the feasibility of mixed-dimensional FET in practical
applications. Furthermore, unlike conventional material integration,

which relies on the formation of chemical bonds and requires precise
lattice matching, vdW integration circumvents these constraints, sig-
nificantly broadening the range of possible material combinations for
2D FETs24. While our primary focus is on the application of vdW
dielectrics in 2D FETs, the vdW materials also show promise for 3D
FETs, driven by recent advancements in vdW integration techniques
that extend beyond traditional vdW materials24.

Supplementary Fig. 1 outlines the workflow for screening low-
dimensional vdWmaterials and high-throughput calculations. Starting
with 126335 materials from the Materials Project database22, we
focusedonpotential vdWdielectricswith bandgap larger than 1 eV and
ICSD (Inorganic Crystal Structure Database) ID number. Due to the
computational complexity, transition metal compounds, along with
materials whose atomic number is larger than 50 in unit cells, are
excluded. Materials containing inert elements and elemental materials
are also omitted due to their weak ionic polarization under an electric
field. This initial screening yielded 5753 materials. Subsequently, we
used a topology-scaling algorithm21 to identify their cluster dimen-
sionality. Among the identified low-dimensional materials, only those
containing unitary clusters in unit cells are retained as vdWmaterials26.
This process yields 452 0D vdW materials, 113 1D vdW materials, and
351 2D vdW materials. We further refined the selection of 0D vdW
materials, excluding those with experimental structures measured
under extreme conditions (e.g., CO2, H2S, and H2O), as they are
unsuitable for device integration. Therefore, we established a criter-
ion, selecting209vdW0Dmaterials out of 452, basedon a ratioof total
atomic covalent volumes to unit-cell volume exceeding 0.14. Subse-
quently, we performed the high-throughput calculation, obtaining
bandgaps and dielectric values for 189 0D, 81 1D, and 252 2D vdW
materials, as shown in Fig. 1d. All calculated data are listed in Supple-
mentary Tables 4 and 5. Dimensionality identification details and cal-
culation methods can be referred to Methods section.

It’s worth noting that several experimentally reported vdW
dielectrics are also in our high-throughput calculations, such as 2D
hBN10,11, 2D Bi2SeO5

14,15, 2D SiP2
16, and 0D Sb2O3

12. To ensure the accu-
racy of our high-throughput calculations, we initially compared our
computed data with experimental results for these experimentally
reported vdW dielectrics, as shown in Supplementary Table 1. The
absolute difference of ε between our calculated values and experi-
mental values is within 2. Given that the employing generalized

(a) (b)

(c) (d)

0D molecules 1D chains

2D channel 2D channel

2D channel

2D layers

Fig. 1 | Schematic diagrams illustrating the integration of low-dimensional van derWaals (vdW)materials. aDielectric layer composed of 0Dmolecules. bDielectric
layer composed of 1D chains. c Dielectric layer composed of 2D layers. d Statistical analysis of cluster dimensions for computationally convergent 522 vdW materials.
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gradient approximation (GGA) function typically underestimates
bandgap values, our calculated bandgaps are approximately 1 eV lower
than the experimental values. However, bandgaps obtained under
hybrid functionals or GW approximation closely align with experi-
mental values. These results affirm the reliability of our calculated
data. The calculated results are shown in Fig. 2. Since the dielectric
response of materials to an external electric field involves both elec-
tronic polarization and ionic polarization, we presented the distribu-
tions of the electronic contribution to the dielectric constant (εel) and
ionic contribution to the dielectric constant (εion) with respect to band
gap in Fig. 2a, b, respectively. It’s worth noting that εel and εion values
discussed here are extracted from corresponding dielectric matrixes
along the vdWdirection (seeMethods section). Notably, εel exhibits an
inverse relationship with the band gap value, while εion exhibits no
obvious correlation with the band gap value, consistent with previous
observations in 3D materials27,28. This observation is reasonable
according to the calculation formulas for the dielectric matrix. The
electronic contribution to the dielectric matrix can be expressed as29,

εrealel,αβ = 1 +
2
π
P
Z 1

0

εimag
el,αβðω0Þ
ω0 dω0 ð1Þ

where α and β ( = x, y, z) are Cartesian directions. εimag
el,αβðωÞ is the ima-

ginary part of the frequency-dependent dielectric function,

εimag
el,αβ ωð Þ= 4πe2

Ω
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D E
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ϵck and ϵvk are the energies of conduction and valence band at
the wavevector k, respectively. uck and uvk are the periodic parts of
their corresponding wavefunctions. From Eq. 1, we knew that the
electronic static dielectric matrix mainly depends on the values of
εimag
el,αβ ωð Þ function in the low-frequency integrating region. εimag

el,αβ ωð Þ
function is related to the electron transition from valence band to
conduction band, with its first peak position determined by the
minimum of direct band gap. Therefore, the electronic contribution
to the dielectric matrix is approximately inversely proportional to
bandgap value. The ionic contribution to dielectric matrix can be
expressed as30,

εion,αβ =
4π
Ω

X
m

P
κα0Z κ,αα0Umðκα0Þ� � P

κβ0Zκ,ββ0Umðκβ0Þ
� �

ω2
m

ð3Þ

where, Zκ,αβ is the Born effective charge tensor of atom κ, Um and ωm

are the atomic displacement (eigenvector) and frequency of phonon
mode m.

P
κα0Zκ,αα0Umðκα0Þ is the total ion dipole moment along α

direction under the vibration of phonon mode m. Since the denomi-
nator of Eq. 3 is the square of phonon vibration frequency, the ionic
contribution to dielectricmatrixprimarily depends on the infrared (IR)
active phonon vibration at low-frequency region, rather than the
band gap.

As canbe observed, the range of εel value is an order ofmagnitude
smaller than that of εion value for 522 vdW materials. Notably, the 1D
vdW crystal Sb8O12 (material ID in MP: mp-2136) stands out with the
highest εion value up to 165.24, alongside εel and bandgap values of 5.27
and 2.16 eV, respectively. In comparison, the experimentally reported

(a) (b)

(c) (d)

Fig. 2 | Dielectric constant vs. band gap plots. a Electronic contribution to
dielectric constant (εel) vs. band gap, b Ionic contribution to dielectric constant
(εion) vs. band gap, c Total dielectric constant (εtot) vs. band gap, and d εtot vs. band
gap plot for 20 materials with band gap larger than 2.5 eV, εtot larger than 5, and
exfoliation energy less than 30meV/Å2 after checking their suitability for field-
effect transistor (FET) applications. Here, the blue, orange, and green points
represent 0D, 1D, and 2D vdWmaterials, respectively. The horizontal and vertical

gray dashed lines, respectively, mark the positions with a dielectric value of 5 and a
bandgap value of 2.5 eV. The Pareto fronts for 1D and 2D candidates are plotted in
d with orange and green dashed lines, respectively. The Pareto front of 0D mate-
rials is mp-1999_Sb8O12, which has been experimentally reported as a molecular
crystal dielectric12. These materials on the Pareto fronts are labeled with their full
chemical formula and color-coded to match their corresponding data points,
whose numerical values are given in Table 1.
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0DvdWdielectric Sb8O12
12 (material ID inMP:mp-1999) has a εion value

of 5.29, a εel value of 4.56 and a bandgap value of 3.19 eV. We carefully
compared the difference between mp-1999_Sb8O12 and mp-
2136_Sb8O12 from several aspects, including lattice structure, electro-
nic structure, bonding information, and IR active phonon vibration
intensity, as shown in SupplementaryNote 1. The analysis suggests that
mp-2136_Sb8O12 features weaker Sb-O bond strengthwithin the cluster
and denser cluster stacking, resulting in a smaller bandgap. Besides,
given their similar orbital components around the Fermi level (Sup-
plementary Fig. 3b, e), mp-2136_Sb8O12 thus has larger εel according to
Eq. 1. The IR intensity spectra in Supplementary Fig. 3c, f present that
mp-2136_Sb8O12 has much lower-frequency IR active phonon mode,
explaining its significantly larger εion value of mp-2136_Sb8O12, as per
Eq. 3. Nevertheless, predicting the infrared (IR) intensity spectrum
remains challenging due to its dependence on atomic structure. Gen-
erally, weaker bond strength and heavier atommass are more likely to
induce softer phonon mode, hence lower-frequency IR active phonon
mode. The comparison between mp-1999_Sb8O12 and mp-2136_Sb8O12

suggests thatmaterials with readily excited electron-hole pairs tend to
exhibit larger electronic dielectric values. Furthermore, materials with
easily excited IR active phonon modes are likely to have larger ionic
dielectric values.

Candidates on the Pareto fronts
Figure 2c shows the distribution of the total dielectric constant (εtot,
the sum of εel and εion) with respect to the band gap for 522 vdW
materials. In the pursuit of promising dielectrics with substantial
capacitance and minimal tunneling current, we mainly focused on
materials with εtot surpassing 5 and bandgap exceeding 2.5 eV (under
GGA functional), resulting in a total of 124 materials. To address the
demands of device miniaturization, we calculated the exfoliation
energy for these 124 materials (see Methods section for details).
Materials with lower exfoliation energy exhibit weaker interlayer
binding, thereby facilitating the formation of stable few-layer struc-
tures. Consequently, we identified 81 materials with exfoliation energy
below 30meV/Å2, comprising 11 0D, 16 1D, and 54 2D vdW materials.
Given that some of these materials are volatile, deliquescent, or toxic
and therefore unsuitable for 2D FET applications, we further investi-
gated the physical and chemical properties of the 81materials through
literature and web searches (Supplementary Table 3), and finally
remain 20 materials. We then employed Pareto front analysis, a
method commonly used for multi-objective optimization, to identify
desired materials with both a large dielectric value and a large
bandgap31. Accordingly,we selected9dielectric candidates situatedon
the Pareto fronts across materials of different dimensions, as marked
in Fig. 2d and listed in Table 1. Among them, 0D vdW material mp-
1999_Sb8O12 has been experimentally confirmed as amolecular crystal
dielectric.

Subsequently, we investigated the band alignments between the 9
dielectric candidates and a common channel material 2D MoS2. The
candidates are cleaved along the vdW direction with the largest
dielectric response. Minimum slab models of candidates are con-
structed to extract their band edge positions using HSE06 hybrid
functional32. Their projected density of states (PDOS) are shown in
Supplementary Fig. 5. The layered structures, composed of clusters
with different dimensions, are shown in Fig. 3b, while their band
alignments with MoS2 monolayer are shown in Fig. 3a. The energy
ranges within 1 eV above the conduction band minimum (CBM) and
below the valence band maximum (VBM) of MoS2 are shaded in light
cyan. When 2D MoS2 serves as the channel material, layered Sb4O4F4
and Al8Sn4Cl24O4 dielectrics are well-suited for p-type field-effect
transistors (FETs), due to the high tunnel barrier for hole carriers. On
the other hand, layered Sb8O12, Sn4O2F4, Te6Se2O16, and Sb16O16F16
dielectrics are suitable forn-type FETs, given thehigh tunnel barrier for
electron carriers. Layered Sn4P4O12F4, Sb2P2O8, and Sr2I2F2 are suitable
for both n-type and p-type FETs.

It’s worth noting that, when accounting for environmental
dielectric screening, the actual valence and conduction band offsets
between 2D semiconductor channels and vdW dielectrics will be
increased33. Therefore, some vdW dielectrics initially excluded due to
their small band offsets with 2D semiconductor channels may also
prove to be promising upon further investigation. Interestingly, sev-
eral dielectric candidates are characterized by buckled geometric
structure, such as Sn4O2F4, Sb4O4F4, Sb16O16F16, and Sn4P4O12F4. While
the vacuum between the 2D layer and the channel could potentially
degrade the uniform dielectric environment, they can impart aniso-
tropic conductance to isotropic semiconductor channels, as demon-
strated in 2D SiP2-gated MoS2 FET16, and enable unique device
functionalities, such as anisotropic digital inverter34, anisotropic
memorizers35, artificial synaptic devices36, and so on.

Statistical analysis of dimension and element preference
To identify characteristics of promising dielectric candidates, we
analyzed the distributions of dimension and element for 522 vdW
materials. ThesevdWmaterials are categorized into four regions based
on their dielectric and bandgap values. As shown in Fig. 4a,materials in
region 1 have a dielectric value larger than 5 and bandgap less than
2.5 eV, those in region 2 have a dielectric value less than 5 and bandgap
less than 2.5 eV, region 3 comprises materials with a dielectric value
larger than 5 and bandgap larger than 2.5 eV, and region 4 consists of
materials with a dielectric value less than 5 and bandgap larger than
2.5 eV. As shown in Fig. 4b, there are 192, 57, 124, and 149 vdWmaterials
in the four regions, respectively. The prevalenceofmaterials in regions
1 and 4 is attributed to the inverse relation between εel and bandgap
(Fig. 2a).Materials in region3have a slightly larger εion, enhancing their
total dielectric value compared to materials in region 4. Therefore,

Table 1 | Details of 9 dielectric candidates on the Pareto fronts

Material ID in MP Full Formula Bandgap (eV) εel εion εtot Space Group Eexf (meV/Å2) D

mp-1999 Sb8O12 3.19 4.56 5.29 9.85 P�4 3m 24.52 0

mp-27480 Sn4O2F4 2.58 4.57 12.25 16.82 P2/m 17.59 1

mp-7609 Sb4O4F4 3.26 3.50 4.09 7.59 P21/m 28.04 1

mp-560633 Al8Sn4Cl24O4 3.98 2.90 4.49 7.39 P�1 11.74 1

mp-29320 Te6Se2O16 2.66 4.89 7.92 12.82 P�1 21.15 2

mp-561533 Sb16O16F16 3.19 3.67 6.91 10.58 P21/c 29.90 2

mp-555838 Sn4P4O12F4 3.53 3.09 5.95 9.04 Pc 15.85 2

mp-3439 Sb2P2O8 4.00 3.54 5.15 8.70 P21/m 27.96 2

mp-23046 Sr2I2F2 4.36 3.29 3.51 6.80 P4/nmm 15.69 2

The table includes Material ID in the MP database, full formula, bandgap, εel, εion, εtot, space group of clusters, exfoliation energy per area (Eexf), and cluster dimension (D).
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materials in region 3, where εion is critical, align with our objective.
Region 2 contains the fewest materials, characterized by both small εel
and εion, with bandgap values clustering around 2 eV (Fig. 2c). Figure 2a
reveals that εel is not strictly inversely proportional to bandgap. There
is a spread for εel value when given a bandgap, especially for a small
bandgap. Some materials thus have small εel, even though their
bandgap is small. The reason for this phenomenon is that the electron
transition possibility depends not only on bandgap, but also the
electronic structure and density of state around Fermi energy (Eq. 2)37.

As shown in Fig. 4b, 0D vdW materials (blue pies) are less pre-
valent in region 3, while 1D (orange pies) and 2D vdWmaterials (green
pies) are underrepresented in region 2. This suggests that 1D and 2D
vdW materials are more likely to possess a large εion value. Supple-
mentary Fig. 6 confirms that only a small fraction of 0D vdWmaterials
have εion values larger than 5, whereas a substantial portion of 1D and
2D vdWmaterials do. To further analyze the distribution of anions and
cations in each region, Supplementary Fig. 7 presents the prevalence
of anions and cations in a histogram for each region, while Fig. 4d, e
illustrates this distribution on the periodic table in a heatmap. Figure
4c displays the top five prevalent anions and cations in each region,
excluding the hydrogen cation, due to its tendency to form hydroxyl
anions when bonding with oxygen. By comparing the top five pre-
valent anions across different regions (gray bars in Fig. 4c), it is evident
that materials with bandgap larger than 2.5 eV (regions 3 and 4) pre-
dominantly utilize oxygen, nitrogen, chlorine,fluorine, andbromine as
anions, with most of these anions exhibiting strong electronegativity.
Conversely, materials with bandgap less than 2.5 eV (regions 1 and 2)
mainly utilize sulfur, oxygen, iodine, selenium, and bromine as anions,

with most of these anions having weak electronegativity. As shown in
Fig. 4d, elements with strong electronegativity (O, F, and Cl) are pre-
dominantly found in materials with large bandgaps (region 3 and 4,
right sides of rectangles), whereas elements with weak electro-
negativity (S, Se, Te and I) mainly distribute in materials with small
bandgaps (region 1 and 2, left sides of rectangles).

We further analyzed the distribution of cations across different
regions. As shown in the salmon bars in Fig. 4c, materials with εtot
larger than 5 (regions 1 and 3) predominantly take phosphorus, anti-
mony, tin, bismuth, and lead as cations, with most of these cations
having large atomic masses. In contrast, materials with εtot less than 5
(regions 2 and 4) predominantly take phosphorus, sulfur, silicon, car-
bon, and boron as cations, with most of these cations having small
atomic mass. Figure 4e illustrates that elements in periods 4, 5, and 6
with larger atomicmass (e.g., As, Se, Sn, Sb, Te, Pb and Bi) are primarily
found in materials with large εtot (regions 1 and 3, upper portion of
rectangles), whereas elements in period2 and 3with small atomicmass
(e.g., B, C, Si, P and S) aremainly distributed inmaterials with small εtot
(regions 2 and 4, lower portion of rectangles). Notably, alkalimetal and
alkaline earth metal cations, characterized by very weak electro-
negativity, are primarily observed in materials with large bandgaps
(regions 3 and 4, right sides of rectangles) in Fig. 4e.

In summary, our analysis suggests that materials with large
bandgaps typically incorporate strongly electronegative elements (O,
F, and Cl) as anions, or very weakly electronegative elements (alkali
metals and alkaline earthmetals) as cations. Conversely,materialswith
small bandgap typically incorporate elements with weak electro-
negativity (e.g., S, Se, Te, and I) as anions. Furthermore, materials with

(a)

Sn4O2F4 Sb4O4F4 Te6Se2O16Al8Sn4Cl24O4Sb8O12

Sb16O16F16 Sn4P4O12F4 Sb2P2O8 Sr2I2F2

(b)

Fig. 3 | Band edges and atomic structures for the layered dielectric candidates
on the Pareto fronts. a The band alignments between layered candidates and 2D
MoS2 calculated with HSE06 functional. Here, the gray and salmon bars show the
valence band maximum (VBM) and conduction band minimum (CBM) of candi-
dates, respectively. Theblackand reddashed lines show theVBMandCBMofMoS2,
respectively. The light cyan regions present the energy ranges of 1 eV above the

MoS2 CBM and beneath the MoS2 VBM. b Top views of monolayer candidates.
Sb8O12 is composed of 0D clusters. Sn4O2F4, Sb4O4F4, and Al8Sn4Cl24O4 are com-
posed of 1D clusters. Te6Se2O16, Sb16O16F16, Sn4P4O12F4, Sb2P2O8, and Sr2I2F2 are 2D
clusters. Their side views are shown in Supplementary Fig. 4. The dashed linesmark
the single unit cell of each material.
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large εtot tend to incorporate heavier elements (e.g., As, Se, Sn, Sb, Te,
Pb, and Bi) as cations, while those with small εtot generally involve light
elements (e.g., B, C, Si, P, and S) as cations. These observations are
understandable and reasonable.

Firstly, the bandgap value hinges on the position of the band
edges. The positions of VBM andCBM are generally determined by the
energy levels of anionic and cationic valence electrons, respectively,
according tomolecularorbital theory38,39. Introducing non-oxide anion
with lower electronegativity into oxides has been utilized to narrow
the bandgap for visible light applications40,41. Various semiempirical
correlations between bandgap and element electronegativity have
beenproposedover the last century42,43, including a relationshipwhere
the bandgap value of oxides is proportion to the square of the differ-
ence between average cationic and anionic electronegativity43. Sec-
ondly, materials with heavier cations often exhibit softer phonon
mode, making themmore likely to generate lower-frequency IR active
phonon mode, thereby increasing the εion and εtot. Furthermore, hea-
vier cations typically have larger atomic radii, leading to increased
atomic polarization and longer bond lengths. These factors are likely
to contribute to higher εel and εion, which have been extensively stu-
died and applied in the design of polymer dielectrics44–46. Hence, in the
pursuit of promising dielectrics with both large bandgaps and high
dielectric constants, materials featuring strongly electronegative
anions (e.g., O, F, and Cl) and heavy cations (e.g., As, Se, Sn, Sb, Te, Pb
and Bi) should be prioritized.

In addition, it’s noteworthy to consider why some materials with
bandgap less than 2.5 eV (in regions 1 and 2) also contain anions with
strong electronegativity (e.g., O anion). This can be attributed to sev-
eral factors. Firstly, most of them have bandgap values close to 2.5 eV,
especially those in region 2. Secondly, certain materials contain mul-
tiple anions (e.g., mp-23072_Bi2Br2O2 in region 1, whose VBM ismainly

contributed by Br anions, shown in Supplementary Fig. 8). Thirdly,
additional factors beyond anionic electronegativity, such as cation
type and crystal structure, also influence bandgap values. As for why
some materials with εtot exceeding 5 (in regions 1 and 3) also contain
light cations (e.g., P cation). Firstly, for materials with a gap less than
2.5 eV (in region 1), most of them have εel values larger than 5. Hence,
the value of εion is not crucial to make their εtot larger than 5 (Fig. 2a).
However, those with a bandgap larger than 2.5 eV and εel less than 5 (in
region 3), generally containmultiple cations besides light cations (e.g.,
mp-581609_Bi2P2Pb8O16 in region 3, whose cations include Bi, Pb, and
P, shown in Supplementary Fig. 8). Lastly, other factors such as crystal
structure and anion type, also influence εion values beyond cationic
atomic mass.

Two-step ML screening classifier
According to the above analysis, materials with strongly electro-
negative anions and heavy cations are more likely to be promising
dielectrics. To efficiently screen such materials, we developed a
quantitative machine learning (ML) model comprising two classifiers,
as illustrated in Fig. 5a. Thefirst classifier aims to identifymaterialswith
bandgap larger than 2.5 eV, while the second classifier is further
applied to screen materials with εtot larger than 5.

The dataset for our ML models is derived from our high-
throughput first-principles calculations. For the bandgap classifier,
all 522 calculated data are utilized, including 249 materials with a
bandgap less than 2.5 eV (negative class ‘0’) and 273materials with a
bandgap larger than 2.5 eV (positive class ‘1’). For the εtot classifier,
only the subset of 273 materials with a bandgap larger than 2.5 eV is
used. This subset includes 149 materials with εtot less than 5
(negative class ‘0’) and 124 materials with εtot larger than 5 (positive
class ‘1’).

1. εtot ≥ 5
gap < 2.5

eV

2. εtot < 5
gap < 2.5

eV

3. εtot ≥ 5
gap ≥ 2.5

eV

4. εtot < 5
gap ≥ 2.5

eV

(a)

(b)

(c)

(e)(d)

Bandgap

ε to
t

Fig. 4 | Statistical analysis of 522 calculatedmaterials. aDivisionofmaterials into
four regions according to their band gap and dielectric values in order to investi-
gate the dimension and element preference in each region, as shown in b–e.
b Distribution of material dimension in each region. The blue, yellow, and green
pies represent the percentages of 0D, 1D, and 2D vdWmaterials in each region,
respectively. c Statistic of top five prevalent anion and cation (excluding hydrogen

cation) in each region, shown as a histogram. The gray and salmon bars represent
the material ratio containing certain anion or cation, respectively. d Statistic of
anion prevalence and e cation prevalence in each region, shown as a heatmap on a
periodic table. Here, every element rectangle is divided into four parts, corre-
sponding to four regions in a.
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Next, we selected 7 features based on the previous statistics
analysis, including 4 elemental attributes, 1 stoichiometric attribute,
and 2 structural attributes. Elemental attributes contain the mean
atomic mass and electronegativity of cations (Mean_mass_cations,
Mean_elen_cations) and mean atomic mass and electronegativity of
anions (Mean_mass_anions, Mean_elen_anions). Stoichiometric attri-
bute is the L2 norm of elemental fractions47. Structural attributes
contain cluster dimensionality (Dimension) and packing fraction
(Packing_fraction). By computing the Pearson correlation coefficients
among 7 features, as shown in Supplementary Figs. 9 and 10, the
absolute values of Pearson correlation coefficients among 7 features
are below 0.65, indicating minimal feature redundancy48. Besides, the
upper panel of Fig. 5b shows the Pearson correlation coefficients
between these features and bandgap, as well as εtot. Several features,
particularly elemental attributes, show correlation coefficients with
absolute values exceeding 0.3, demonstrating clear relevance to
bandgap and εtot. Hence, our selection of features is deemed reason-
able. Moreover, material bandgap shows a positive correlation with
anionic electronegativity and a negative correlation with anionic
atomic mass, cationic atomic mass, and cationic electronegativity. εtot

primarily exhibits a positive correlation with cationic atomic mass,
anionic electronegativity, and packing fraction.

Following data collection and featurization, we then trained the
classificationmodelsusing theXGBoost algorithm,which is basedon the
gradient boosting tree method49. The selection of model parameters is
summarized in theMethods section. Figure 5c, d, respectively, show the
final model performance of the bandgap classifier and εtot classifier,
presenting the receiver operating characteristic (ROC) curve, the area
under ROC (AUC), accuracy, precision, recall, and confusion matrix.
Both classifiers achieve accuracies exceeding 80%, indicating good
predictionperformance.We further analyzed the feature importance for
these two classifiers, as shown in the bottom panel of Fig. 5b. For the
bandgap classifier, the mean electronegativity of anions is the most
important factor in determining bandgap value. As for the εtot classifier,
the mean atomic mass of cations is the most crucial feature among the
seven considered. These results are consistent with our statistics analy-
sis, indicating that the classification models are reasonable.

To demonstrate the practicality of our two-step classification
models, we further applied them to identify additional promising vdW
dielectrics. Following the screening process for vdW materials

(b)

(c) (d)

gap ≥ 2.5 eV

εtot ≥ 5

vdW materials

vdW dielectrics

(a)

Fig. 5 | Two-step machine learning (ML) screening classifier. a Schematic
workflow for screening materials with a band gap larger than 2.5 eV and εtot larger
than5.The first step involves using abandgap classifier to screenmaterialswith gap
larger than 2.5 eV, the second step utilizes a εtot classifier to identify materials with
εtot larger than 5. b Pearson correlation coefficients (upper panel) between the 7
features and band gap (green line), and between the 7 features and εtot (orange
line). The feature importance of the two classifiers is depicted in the bottom panel,
with green and orange bars representing the feature importance for gap classifier
and εtot classifier, respectively. cReceiver operating characteristic (ROC) curve (red

line) of gap classifier in the test set. The insert subplot is confusion matrix on the
test set, where the labels ‘0’ and ‘1’ represent materials with a gap less than 2.5 eV
andmaterials with gap larger than 2.5 eV, respectively.dROC curve (red line) of εtot
classifier in the test set. The insert subplot is confusionmatrix on the test set, where
the labels ‘0’ and ‘1’ represent materials with εtot less than 5 and materials with εtot
larger than 5, respectively. The gray dashed lines in panels c, d represent the ROC
curves of randomclassifiers. Themodel performance indicators, including the area
under the ROC curve (AUC), accuracy, precision, and recall, are listed in panels c, d.
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depicted in Supplementary Fig. 1, we first filtered out 199 vdW mate-
rials without ICSD ID numbers from the Materials Project database.
Given the significant differences indata distributions between this 199-
materials dataset and our original 522-materials dataset, as illustrated
in Supplementary Fig. 11, we adopted active learning to mitigate
potential model errors arising from data bias. Upon completion of
active learning iterations, 72 materials are predicted to be promising
vdW dielectrics. Among them, 49 materials are verified to possess a
bandgap larger than 2.5 eV and a dielectric constant exceeding 5.
Detailed information on all 60 promising vdW dielectrics is listed in
Supplementary Table 7, while their εtot vs. bandgap plot is shown in
Supplementary Fig. 12. We found that all dielectric candidates located
on the Pareto fronts are successfully predicted, including 0D Sb8O8F8
(material ID: mp-753868; Eg = 3.57 eV; εtot = 9.33), 1D Bi4O4F4 (material
ID: mp-753160; Eg = 3.33 eV; εtot = 29.16) and 2D Bi4O2F8 (material ID:
mp-753309; Eg = 4.00 eV; εtot = 28.38).

Besides, it’s important to note that while our dataset is limited to
vdWmaterials, the analysis of influencing factors on bandgap and εtot
is also applicable to non-vdW materials. As calculated by Petousis
et al.50,most reported high-κdielectrics featureboth heavy cations and
strongly electronegative anions, such as BiF3, Tl2SnF6, and AlTlF4. This
observation indicates that our selected features can also be adapted to
build ML classifiers for screening promising 3D non-vdW dielectrics.

Discussion
In summary, the bandgap and dielectric values of 189 0D vdW
materials, 81 1D vdW materials, and 252 2D vdW materials are
obtained via high-throughput first-principles calculations. They are
all synthesized in experimental and screened out from the Materials
Project database. Among them, 9 highly promising dielectric candi-
dates are identified as suitable for MoS2-based FET due to their large
band offsets. Statistical analysis of the dimensionality and element
prevalence among the 522 vdW materials reveal that materials con-
taining strongly electronegative anions and heavy cations are more
likely to be promising dielectrics, and 1D and 2D vdW materials are
more likely to possess large dielectric constants. Upon these find-
ings, we developed a two-step ML classifier to screen promising
candidates. The model incorporates seven carefully selected feature
descriptors and achieves accuracies exceeding 80%. The feature
importance analysis indicates that the mean electronegativity of
anions and the mean atomic mass of cations are most relevant to
bandgap and dielectric values, respectively. Implementing an active
learning framework, we successfully predicted 49 additional pro-
mising vdW dielectrics. Overall, our work provides a rich candidate
list of vdW dielectrics and a high-accuracy ML classification model
for screening promising dielectrics, which will facilitate the devel-
opment and application of future 2D FETs.

Methods
Dimensionality identification
The process follows a topology-scaling algorithm21, as illustrated in
Supplementary Fig. 1. First, identify the number of covalently bonded
clusters in the unit cell, denoted as n. Then, create a 2 × 2 × 2 supercell
and count the clusters, denoted asN. Calculate the ratioN/n: ifN/n = 8,
thematerial is composed of 0D clusters; ifN/n = 4, it is composed of 1D
clusters; ifN/n = 2, it is composed of 2D clusters; and if N/n = 1, it is 3D.
Non-integer ratios indicate that the material is composed of mix-
dimensional clusters, which we ignored.

To identify covalently bonded clusters, we used the geometric
criterion,

dij ≤ kðrcovi + rcovj Þ ð4Þ

where dij is the distance between atom i and j, and rcovi and rcovj are
their covalent radii. The scaling factor k affects cluster identification:

larger k values identify larger clusters, indicating higher dimensions,
while smaller k values identify smaller clusters, indicating lower
dimensions. We tested multiple k values (1.05, 1.1, 1.15, 1.2, and 1.3).
Results from these multiple k values are collected, and manually cor-
rected in case of misidentifications.

Calculation details
First-principles calculations are performed using the Vienna Ab
initio Simulation Package (VASP), based on Kohn-Sham density
functional theory51,52. The projector augmented-wave (PAW)
pseudopotentials53 are used to describe the valence electron
wavefunctions with a plane-wave cutoff of 520 eV. The Perdew-
Burke-Ernzerhof generalized gradient approximation (PBE-GGA)54

is applied for electron exchange-correlation energy. For vdW
systems, the DFT-D3 method of Grimme55 corrects the vdW
interactions. The k-point sampling density is set to 0.02 × 2π Å-1.
Considering that some vdW materials contain heavy elements
such as Pb, Tl, and Bi, we also examined the effects of spin-orbit
coupling (SOC) on key properties, including the bandgap (Eg), the
electronic and ionic contributions to the dielectric constant (εel
and εion). The results, summarized in Supplementary Table 8,
indicate that the inclusion of SOC typically reduces the bandgap
while increasing εel, consistent with the inverse relationship
between Eg and εel. No clear trend was observed for εion. Although
there are slight differences between the SOC and non-SOC
results, the relative differences among vdW materials remain
consistent.

Dielectric constant along the vdW direction
The dielectric matrix is determined using density functional pertur-
bation theory (DFPT)30. From this matrix, the orientationally averaged
dielectric constant along the vdW direction is extracted. For 0D vdW
materials with three independent vdW directions, the spherically
averaged dielectric constant is:

ε0DvdW

=

Rπ
0dθ

R 2π
0 sin θdϕ sin θ cosϕα + sin θ sinϕβ+ cos θγð ÞTE sin θ cosϕα + sinθ sinϕβ+ cosθγð Þ

4π

=
λ1 + λ2 + λ3

3

ð5Þ

Here, α, β, and γ are the three independent eigenvectors corre-
sponding to the eigenvalues λ1, λ2 and λ3 of dielectric matrix E. For 1D
vdW materials with two independent vdW directions (α and β), the
circularly averaged dielectric constant is:

ε1DvdW =

R 2π
0 dθ sinθα + cosθβð ÞTE sinθα + cosθβð Þ

2π
=
αTEα +βTEβ

2
ð6Þ

In this case, the numerator is the trace of 2D matrix
αTEα αTEβ
βTEα βTEβ

� �
, which equals the sum of the eigenvalues (λ1 + λ2). For

2D vdW materials with one vdW direction (γ),

ε2DvdW = γTEγ ð7Þ

Calculation of exfoliation energy
The exfoliation energy per unit area is defined as56

Eexf =
Eiso � Ebulk=n

A
ð8Þ

where Eiso is the energy of an isolate cluster in vacuum. Ebulk is the
energy of bulk composed of n clusters, and A is half the surface area of
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every cluster in bulk. The surface area A is calculated as57

A=

2π 3V
4πn

� �2=3
f or 0Dmaterials

πVh
n

� �1=2
f or 1Dmaterials

a×b
�� �� f or 2Dmaterials

8>><
>>:

ð9Þ

Where V is the volume of bulk composed of n clusters, h is the period
length along the 1D chain direction, and a and b are the lattice vectors
in the 2D plane. Examples illustrating the calculation of cluster surface
area are shown in Supplementary Fig. 2.

Machine learning model
The two classification models are implemented using XGBoost, a
highly efficient, flexible, and portable distributed gradient boosting
library49. The decision tree model is utilized as the base learner, and
hyperparameter optimization is conducted using the evolutionary
algorithm of Neural Network Intelligence (NNI) with 10-fold cross-
validation. The dataset is divided into a 70% training set and a 30% test
set. Data bias between the 522-material and 199-material datasets is
observed using the Uniform Manifold Approximation and Projection
(UMAP) algorithm58. To address the data bias, an active learning fra-
mework is employed, wherein the top 10 materials with predictive
probabilities close to0.5 are fed back into the training set.More details
can be found in Supplementary Note 2.

Data availability
Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information files. All raw data
generated during the current study are available from the corre-
sponding authors upon request.

Code availability
The central code used in this paper is VASP. Detailed information
related to the license and user guide are available at https://www.vasp.
at. Other codes used in the study are available from the corresponding
authors upon request.
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